Direct comparison of amplitude and geometric measures of spectral inhomogeneity using phase-cycled 2D-IR spectroscopy

The Journal of Chemical Physics, Volume 154, Issue 17, May 2021. Two-dimensional infrared (2D-IR) spectroscopy provides access to equilibrium dynamics with the extraction of the frequency-fluctuation correlation function (FFCF) from the measured spectra. Several different methods of obtaining the FFCF from experimental spectra, such as the center line slope (CLS), ellipticity, phase slope, and nodal line slope, all depend on the geometrical nature of the 2D line shape and necessarily require spectral extent in order to achieve a measure of the FFCF. Amplitude measures, on the other hand, such as the inhomogeneity index, rely only on signal amplitudes and can, in principle, be computed using just a single point in a 2D spectrum. With a pulse shaper-based 2D-IR spectrometer, in conjunction with phase cycling, we separate the rephasing and nonrephasing signals used to determine the inhomogeneity index. The same measured data provide the absorptive spectrum, needed for the CLS. Both methods are applied to two model molecular systems: tungsten hexacarbonyl (WCO6) and methylcyclopentadienyl manganese tricarbonyl [Cp′Mn(CO)3, MCMT]. The three degenerate IR modes of W(CO)6 lack coherent modulation or noticeable intramolecular vibrational redistribution (IVR) and are used to establish a baseline comparison. The two bands of the MCMT tripod complex include intraband coherences and IVR as well as likely internal torsional motion on a few-picosecond time scale. We find essentially identical spectral diffusion, but faster, non-equilibrium dynamics lead to differences in the FFCFs extracted with the two methods. The inhomogeneity index offers an advantage in cases where spectra are complex and energy transfer can mimic line shape changes due to frequency fluctuations.