Physics of Plasmas, Volume 28, Issue 5, May 2021. Using a novel three-dimensional electromagnetic hybrid code, XHYPERS, we simulate the generation of lower hybrid oscillations in a magnetized plasma by a heavy ion beam with a ring-shaped velocity distribution over much longer periods of time compared to previous simulations. We introduce a phenomenological (effective) electron damping to represent the induced scattering of lower-hybrid waves to whistlers and the loss of energy through whistler propagation out of the turbulent region. We demonstrate the effective electron damping to be a crucial factor in increasing the efficiency of energy deposition by an ion ring velocity beam into plasma turbulence and investigate the efficiency of beam energy extraction as a function of the electron damping rate and beam to plasma ion mass ratio.

## Authors

## Departments

## Libraries

## Recent Articles

- Numerical computation of the transport matrix in a tokamak plasma with electrostatic turbulence
- Numerical computation of the transport matrix in a tokamak plasma with electrostatic turbulence
- Numerical computation of the transport matrix in a tokamak plasma with electrostatic turbulence
- Numerical computation of the transport matrix in a tokamak plasma with electrostatic turbulence
- Numerical computation of the transport matrix in a tokamak plasma with electrostatic turbulence
- Pulse width dependence of magnetic field generation using laser-powered capacitor coils
- Pulse width dependence of magnetic field generation using laser-powered capacitor coils
- Pulse width dependence of magnetic field generation using laser-powered capacitor coils
- Pulse width dependence of magnetic field generation using laser-powered capacitor coils
- Pulse width dependence of magnetic field generation using laser-powered capacitor coils
- Edge turbulent transport toward the L–H transition in ASDEX Upgrade and JET-ILW
- Edge turbulent transport toward the L–H transition in ASDEX Upgrade and JET-ILW
- Edge turbulent transport toward the L–H transition in ASDEX Upgrade and JET-ILW
- Edge turbulent transport toward the L–H transition in ASDEX Upgrade and JET-ILW
- Edge turbulent transport toward the L–H transition in ASDEX Upgrade and JET-ILW
- Two-fluid model of rf current condensation in magnetic islands
- Two-fluid model of rf current condensation in magnetic islands
- Two-fluid model of rf current condensation in magnetic islands
- Two-fluid model of rf current condensation in magnetic islands
- Two-fluid model of rf current condensation in magnetic islands