Applied Physics Letters, Volume 118, Issue 14, April 2021. Broadband quantum-limited amplifiers play a critical role in the single-shot readout of superconducting qubits, but a popular implementation, the traveling wave parametric amplifier, involves a complex design and fabrication process. Here, we present a simple design for a Josephson parametric amplifier, using a lumped element resonator comprising a superconducting quantum interference device whose useful bandwidth is enhanced with an on-chip impedance-matching circuit. We demonstrate a flux-coupling geometry that maximizes the coupling to the Josephson loop and minimizes spurious excitation of the amplifier resonant circuit. The amplifier, which operates in a flux-pumped mode, is demonstrated with a power gain of more than 20 dB over a bandwidth of about 300 MHz, where approximate noise measurements indicate quantum-limited performance. A procedure is given for optimizing the bandwidth for this kind of amplifier, using a linearized circuit simulation while minimizing non-linearities.

## Authors

## Departments

## Libraries

## Recent Articles

- A thermal form factor series for the longitudinal two-point function of the Heisenberg–Ising chain in the antiferromagnetic massive regime
- Modification of modal characteristics in wakes of square cylinders with multi-scale porosity
- Modeling of combined effects of surface roughness and blowing for Reynolds-averaged Navier–Stokes turbulence models
- Antibacterial effects of combined non-thermal plasma and photocatalytic treatment of culture media in the laminar flow mode
- Control of the self-sustained shear layer oscillations over rectangular cavities using high-frequency vortex generators
- The interaction between two electrohydrodynamics phenomena when an electric field affects a two-phase immiscible liquid
- Identification of time scales of the violation of the Stokes–Einstein relation in Yukawa liquids
- Exact solution of partial differential equations for the creation of jet-like flows in plasmas and neutral fluids
- Study on the polarity effect in an atmospheric pressure glow discharge driven by resonant power supply
- On the fast waves in a cylindrical current-carrying plasma
- Flux-pumped impedance-engineered broadband Josephson parametric amplifier
- Temperature-induced first-order electronic topological transition in β-Ag2Se
- Broadband acoustic vortex beam generator based on coupled resonances
- Breathing at high Reynolds number
- Kinetic theory of effect of dust charge fluctuations on the parametric decay of lower hybrid wave instability by relativistic runaway electrons in tokamak
- A non-local fluid closure for modeling cyclotron resonance in collisionless magnetized plasmas
- Investigation of stagnation layer dynamics of counterpropagating laser induced air plasmas: Numerical simulations vis-à-vis experimental observations
- Open systems in classical mechanics
- Golden mean renormalization for the almost Mathieu operator and related skew products
- Ultralow thermal conductivity in quaternary compound Ag2BaSnSe4 due to square-cylinder cage-like structure with rattling vibration