GaN-based pyramidal quantum structures for micro-size light-emitting diode applications

Applied Physics Letters, Volume 118, Issue 14, April 2021. GaN-based pyramidal quantum structures, InGaN nanostructures located on top of micro-sized GaN pyramids, were fabricated by selective-area growth on SiC substrates by means of hot-wall metal-organic chemical vapor deposition. Arrays of GaN-based pyramidal structures exhibit micro-size pyramids possessing high uniformity, precise hexagonal bases, and InGaN/GaN quantum-well layers with well-defined interfaces. Each pyramid comprises a p-i-n InGaN/GaN structure, which is separated from that of other pyramids by a dielectric layer, serving as a building block for micro-emitters. Moreover, interconnected micro-size light-emitting diodes (microLEDs) built on the GaN-based pyramidal quantum structures were demonstrated, resulting in well-determined electroluminescence in the near-ultraviolet regime with negligible spectral shifts at high current levels. The results elucidated the rewards for development of these light-emitting designs and their potential for microLED applications.