Reaction pathways in the solid state and the Hubbard U correction

The Journal of Chemical Physics, Volume 154, Issue 12, March 2021. We investigate how the Hubbard U correction influences vacancy defect migration barriers in transition metal oxide semiconductors. We show that, depending on the occupation of the transition metal d orbitals, the Hubbard U correction can cause severe instabilities in the migration barrier energies predicted using generalized gradient approximation density functional theory (GGA DFT). For the d0 oxide SrTiO3, applying a Hubbard correction to the Ti4+ 3d orbitals below 4–5 eV yields a migration barrier of ∼0.4 eV. However, above this threshold, the barrier increases suddenly to ∼2 eV. This sudden increase in the transition state barrier arises from the Hubbard U correction changing the Ti4+ t2g/eg orbital occupation, and hence electron density localization, along the migration pathway. Similar results are observed in the d10 oxide ZnO; however, significantly larger Hubbard U corrections must be applied to the Zn2+ 3d orbitals for the same instability to be observed. These results highlight important limitations to the application of the Hubbard U correction when modeling reactive pathways in solid state materials using GGA DFT.