InGaN-based nanowires development for energy harvesting and conversion applications

Journal of Applied Physics, Volume 129, Issue 12, March 2021. This Tutorial teaches the essential development of nitrogen-plasma-assisted molecular-beam-epitaxy grown InGaN nanowires as an application-inspired platform for energy harvesting and conversion applications by growing dislocation- and strain-relieved axial InGaN-based nanowires. The Tutorial aims to shed light on the interfacial, surface, electrical, and photoelectrochemical characteristics of InGaN nanowires through nanoscale and ultrafast characterizations. Understanding the interrelated optical-physical properties proved critical in the development of renewable-energy harvesting and energy conversion devices. Benefiting from their unique aspect ratio and surface-to-volume ratio, semiconductor properties, and piezoelectric properties, the group-III-nitride nanowires, especially InGaN nanowires, are promising for clean energy conversion applications, including piezotronic/piezo-phototronic and solar-to-clean-fuel energy-conversion.