Applied Physics Letters, Volume 118, Issue 10, March 2021. Silicon quantum dot spin qubits have great potential for application in large-scale quantum circuits as they share many similarities with conventional transistors that represent the prototypical example for scalable electronic platforms. However, for quantum dot formation and control, additional gates are required, which add to device complexity and, thus, hinder upscaling. Here, we meet this challenge by demonstrating the scalable integration of a multilayer gate stack in silicon quantum dot devices using self-alignment, which allows for ultra-small gate lengths and intrinsically perfect layer-to-layer alignment. We explore the prospects of these devices as hosts for hole spin qubits that benefit from electrically driven spin control via spin–orbit interaction. Therefore, we study hole transport through a double quantum dot and observe current rectification due to the Pauli spin blockade. The application of a small magnetic field leads to lifting of the spin blockade and reveals the presence of spin–orbit interaction. From the magnitude of a singlet-triplet anticrossing at a high magnetic field, we estimate a spin–orbit energy of [math], which corresponds to a spin–orbit length of [math]. This work paves the way for scalable spin-based quantum circuits with fast, all-electrical qubit control.

## Authors

## Departments

## Libraries

## Recent Articles

- Probabilistic Cauchy theory for the mass-critical fourth-order nonlinear Schrödinger equation
- Magnetic perturbations of anyonic and Aharonov–Bohm Schrödinger operators
- Self-aligned gates for scalable silicon quantum computing
- Dynamics of freely suspended drops translating through miscible environments
- Bidispersive double diffusive convection with relatively large macropores and generalized boundary conditions
- A new universal model for friction factor in smooth pipes
- New scaling laws predicting turbulent particle pair diffusion, overcoming the limitations of the prevalent Richardson–Obukhov theory
- Electrically programmable multilevel nonvolatile memories based on solution-processed organic floating-gate transistors
- Short-channel robustness from negative capacitance in 2D NC-FETs
- Identification by deuterium diffusion of a nitrogen-related deep donor preventing the p-type doping of ZnO
- Publisher’s Note: “Phonon-boundary scattering and thermal transport in AlxGa1−xN: Effect of layer thickness” [Appl. Phys Lett. 117, 252102 (2020)]
- Enhanced dielectric and piezoelectric properties of manganese-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals by alternating current poling
- Experimentally calibrated electro-thermal modeling of temperature dynamics in memristors
- Thermal performance of GaInSb quantum well lasers for silicon photonics applications
- Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers
- Computational modeling of three-dimensional thermocapillary flow of recalcitrant bubbles using a coupled lattice Boltzmann-finite difference method
- Thermo-kinetic explosions: Safety first or safety last?
- Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas
- Electronegative microchannel guided streamer propagation for in-liquid spark breakdown applications
- Direct visualization of local deformations in suspended few-layer graphene membranes by coupled in situ atomic force and scanning electron microscopy