Thermomagnetic instability of plasma composition gradients

Physics of Plasmas, Volume 27, Issue 12, December 2020. We show that, under Braginskii magneto-hydrodynamics, anti-parallel gradients in an average ion charge state and electron temperature can be unstable to the growth of self-generated magnetic fields. The instability is analogous to the field-generating thermomagnetic instability, although it is driven by the collisional thermal force magnetic source term rather than the Biermann battery term. The gradient in ion charge state causes a gradient in collisionality, which couples with temperature perturbations to create a self-generated magnetic field. This magnetic field deflects the electron heat flux in a way that reinforces the temperature perturbation. The derived linearized growth rate, typically on hydrodynamic timescales, includes resistive and thermal smoothing. It increases with large ion composition gradients and electron heat flux, conditions typical of the hohlraum walls or contaminant mix jets in inertial confinement fusion implosions. However, extended magneto-hydrodynamic simulations indicate that the instability is usually dominated and stabilized by nonlinear Nernst advection, in a similar manner to the standard thermomagnetic instability.