Cavity quantum electro-dynamics with solid-state emitters in aperiodic nano-photonic spiral devices

Applied Physics Letters, Volume 117, Issue 12, September 2020. Integrated quantum devices are at the basis of the realization of scalable, high-performance quantum technology, including quantum computers and quantum communication schemes, where single photons are emitted, guided, manipulated, and detected on a chip. Engineered nano-devices enable the efficient confinement of light and, ultimately, the control of the spontaneous emission dynamics of single emitters, which is crucial for cavity quantum electrodynamics experiments and for the development of classical and quantum light sources. Here, we report on the demonstration of enhanced light-matter interaction and Purcell effects on a chip, based on bio-inspired aperiodic devices fabricated in gallium arsenide. Indium arsenide single quantum dots are used as internal light sources to image, by means of micro-photoluminescence spectroscopy, the optical modes supported by photonic membranes with Vogel-spiral geometry. These emitters are also used to probe the density of optical states, modified by the aperiodic devices, by means of time-resolved spectroscopy. Our results show cavity quantum electrodynamics effects providing strong modifications of the spontaneous emission decay of single optical transitions. In particular, thanks to the significant modification of the density of optical states demonstrated in Vogel-spiral photonic structures, we show control of the decay lifetime of single emitters with a dynamic range reaching 20, thus opening the path to the implementation of aperiodic geometries in active classical and quantum devices.

Cavity quantum electro-dynamics with solid-state emitters in aperiodic nano-photonic spiral devices

Applied Physics Letters, Volume 117, Issue 12, September 2020. Integrated quantum devices are at the basis of the realization of scalable, high-performance quantum technology, including quantum computers and quantum communication schemes, where single photons are emitted, guided, manipulated, and detected on a chip. Engineered nano-devices enable the efficient confinement of light and, ultimately, the control of the spontaneous emission dynamics of single emitters, which is crucial for cavity quantum electrodynamics experiments and for the development of classical and quantum light sources. Here, we report on the demonstration of enhanced light-matter interaction and Purcell effects on a chip, based on bio-inspired aperiodic devices fabricated in gallium arsenide. Indium arsenide single quantum dots are used as internal light sources to image, by means of micro-photoluminescence spectroscopy, the optical modes supported by photonic membranes with Vogel-spiral geometry. These emitters are also used to probe the density of optical states, modified by the aperiodic devices, by means of time-resolved spectroscopy. Our results show cavity quantum electrodynamics effects providing strong modifications of the spontaneous emission decay of single optical transitions. In particular, thanks to the significant modification of the density of optical states demonstrated in Vogel-spiral photonic structures, we show control of the decay lifetime of single emitters with a dynamic range reaching 20, thus opening the path to the implementation of aperiodic geometries in active classical and quantum devices.