Journal of Mathematical Physics, Volume 61, Issue 9, September 2020. We prove that the local eigenvalue statistics at energy E in the localization regime for Schrödinger operators with random point interactions on [math], for d = 1, 2, 3, is a Poisson point process with the intensity measure given by the density of states at E times the Lebesgue measure. This is one of the first examples of Poisson eigenvalue statistics for the localization regime of multi-dimensional random Schrödinger operators in the continuum. The special structure of resolvent of Schrödinger operators with point interactions facilitates the proof of the Minami estimate for these models.

## Authors

## Departments

## Libraries

## Recent Articles

- One photon’s transmission usefully controls another
- Symplectic coarse-grained classical and semclassical evolution of subsystems: New theoretical approach
- Coupled very-high permittivity dielectric resonators for clinical MRI
- Macroscopic polarization in the nominally ergodic relaxor state of lead magnesium niobate
- Macroscopic polarization in the nominally ergodic relaxor state of lead magnesium niobate
- Switchable smart windows using a biopolymer network of cellulose nanocrystals imposed on a nematic liquid crystal
- Switchable smart windows using a biopolymer network of cellulose nanocrystals imposed on a nematic liquid crystal
- Sensitive detection of excited energy levels in rare-earth optical materials by a magneto-optical resonant excitation technique
- Super-chiral vibrational spectroscopy with metasurfaces for high-sensitive identification of alanine enantiomers
- Super-chiral vibrational spectroscopy with metasurfaces for high-sensitive identification of alanine enantiomers
- Extended plateaux in the vibrational and electron distribution functions of O2/O reacting plasmas in discharge and post-discharge conditions
- Structure and overstability of resistive modes with runaway electrons
- Tropical soils may accelerate global warming
- Eigenvalue statistics for Schrödinger operators with random point interactions on [math], d = 1, 2, 3
- Scattering theory in homogeneous Sobolev spaces for Schrödinger and wave equations with rough potentials
- Band alignment at β-Ga2O3/III-N (III = Al, Ga) interfaces through hybrid functional calculations
- Magnetohydrodynamic self-propulsion of active matter agents
- Erratum: “Carrier leakage via interface-roughness scattering bridges gap between theoretical and experimental internal efficiencies of quantum cascade lasers” [Appl. Phys. Lett. 117, 051101 (2020)]
- Publisher’s Note: “Perpendicular magnetic tunnel junctions based on half-metallic NiCo2O4” [Appl. Phys Lett. 117, 042408 (2020)]
- Research on effects of space charge field in relativistic backward wave oscillator